

Advanced Nuclear Pathways to Commercial Liftoff

Report Update Summary Presentation

September 2024

Why did we write and update the Nuclear Liftoff Report?

Why did we write the Liftoff Report?

What is advanced nuclear and its value proposition? Report covers Gen III+ and IV across large reactors, SMRs, and microreactors

Do we need new nuclear for net zero when renewables are so cheap? Yes, likely 200 GW of new nuclear in the US by 2050, tripling current capacity, especially given renewables buildout!

Report was a collaboration between LPO, OCED, OTT, NE, INL, and ANL

Why did we update it for 2024?

Unprecedented load growth: utilities are now issuing extreme IRP updates for AI, data centers, manufacturing, electrification, etc.

Renewed interest in AP1000s: utilities now saying they value having a constructed design, a supply chain, and a workforce

Value of the existing fleet: in 2022, reactors were being shut down; in 2024, there are plans to restart closed reactors; most sites have room for more reactors (~60-95 GW worth)

... and more!

Nuclear offers a unique value proposition for a net zero grid

Including nuclear (and other clean firm resources) with renewables and storage decreases the cost of decarbonization

Generation and transmission system costs with and without nuclear, \$/MWh

Renewables and storage only

Renewables and storage with nuclear

Modeled costs are for California in 2045 across three models; Source: Baik et al. (2021), "What's different about different net-zero carbon electricity systems?" Renewables and storage only costs were \$129, \$133, and \$150; renewables and storage with nuclear costs were \$80, \$84, and \$94 per MWh

Clean firm reduces need for building additional generation capacity (as well as storage and transmission)

Installed capacity with varying levels of new clean firm generation, GW

Clean firm power sources included are nuclear, hydropower, geothermal, energy storage (when charged using clean electricity), natural gas with carbon capture, geothermal, BECCs; nonclean firm is fossil generation with emissions otherwise offset

Advanced nuclear includes reactor types of all sizes across two generations

	Gen III+	Gen IV				
Coolant	Light water	Gas	Liquid metal	Molten salt		
Examples	 Pressurized water reactor Boiling water reactor 	 High temperature gas reactor Gas fast reactor	Sodium fast reactorLead fast reactor	 Fluoride high temperature reactor Molten chloride fast reactor HALEU 		
Typical fuel	LEU, LEU+	HALEU	HALEU			
Outlet temperature	~300°C	~750°C	~550°C	~750°C		
Power output	Large, small	Small, micro	Small, micro	Small		
Example reactor designers	 GE Hitachi Holtec NuScale Westinghouse 	 BWXT General Atomics Radiant X-energy 	ARCTerraPowerOklo	KairosTerrestrial		

Large reactors are cheaper \$/kw with narrower cost distributions while SMRs may offer smaller overall project costs

Most of the US fleet was built 1970-1980s; in 1974, 12 reactors came online

New nuclear capacity commissioned per year¹, GWe

Number of reactors

1. Excludes test and prototype reactors; Note: Watts Bar 1 & 2 construction originally began in 1973 and halted in 1985; construction resumed on Unit 1 in 1992 and Unit 2 in 2007

Of the 94 operating nuclear reactors in the US, 84 require subsequent license renewal to operate until 2050

Nuclear historic and projected operating capacity by current license status,^{1,2} GW

1. Excludes test and prototype reactors; does not include potential restarts 2. Current licensing status includes all confirmed initial and subsequent license renewals only

The lack of learning effects in the US may in part be explained by the construction of over 50 unique reactor designs

US commercial nuclear reactors by design

Columns show design families, colors show >50 MW differences, box area sized by number of reactors

20 operating nuclear sites and 5 formerly operating sites are in communities eligible for energy community tax credit bonuses

Eligible for tax credit bonus:

- Census tract with coal closure¹
- Census tract that directly adjoins a tract with a coal closure¹
- MSAs/non-MSAs that meet both FFE threshold and the unemployment rate requirement and are an energy community²
- Currently operating nuclear sites³
- Not currently operating nuclear sites⁴

Not currently eligible for tax credit bonus:

- Currently operating nuclear sites
- Not currently operating nuclear sites

1. Census tract with a coal closure or directly adjoining a census tract with a coal closure 2. MSAs/non-MSAs that meet both the Fossil Fuel Employment threshold and the unemployment rate requirement 3. Arkansas Nuclear One, Beaver Valley, Braidwood, Byron, Callaway, Columbia, Comanche Peak, Davis-Besse, Dresden, Fermi, Grand Gulf, H.B. Robinson, LaSalle, Monticello, Shearon Harris, South Texas, Susquehanna, Vogtle, Waterford, Watts Bar 4. Bellefonte (unfinished), Big Rock Point (retired), Blue Castle (proposed), Crystal River (retired), La Crosse (retired), San Onofre (retired), Zion (retired)

Three phases for the nuclear industry to achieve liftoff

Delaying new nuclear deployment could increase the cost of decarbonization

New nuclear capacity starting in 2035

New nuclear capacity starting in 2030

U.S. DEPARTMENT OF ENERGY 13

Any nuclear project requires many different roles to be filled; consortium approaches can help aggregate demand and share costs

	Reactor	Project management			Own (and/or			
	design	Licensing and site dev	Project management	Construction	Multi-project integration	equity)	Operate	Offtake
Multi-utility	Reactor designer	Utility	Utility	Constructor	Potential for new role	Utility	Utility	Utility ratepayers, large offtaker
Aggregated tech offtake	Reactor designer	Utility	Utility	Constructor		Utility or tech offtaker	Utility	Tech offtaker
Developer model	Reactor designer	Developer	Developer	Constructor		Utility or infrastructure fund	Utility	Utility ratepayers, large offtaker
Industrial offtaker	Reactor designer	Industrial offtaker	Industrial offtaker	Constructor		Utility or industrial offtaker	Utility	Industrial offtaker

Roles that differ from multi-utility

When Southern took over project management role, reset budget closer to final cost, especially accounting for Covid impacts

First nuclear concrete

Westinghouse bankruptcy and project restructuring Beginning of COVID-19 pandemic

1. These figures are an estimate of total project cost based on a scaled-up view of Georgia Power's 45.7% share of the project, this means of estimation is inexact due to the differing Financing and Owner's costs between stakeholders. Project costs that are excluded from the VCM reports include: (i) budgeted cost contingency that has not been allocated; (ii) additional cost contingency budgeted by certain other owners (iii) nuclear fuel costs (and related financing costs); and (iv) certain monitoring costs, some of which are owner-specific. Source: Georgia Public Services Commission's Vogtle Construction Monitoring Reports (VCM)

Improvement between Vogtle Units 3 and 4

Days between major milestones for Vogtle Units 3 and 4, days

Much of Vogtle's costs were true FOAK costs and the next AP1000 would be eligible for 30-50% ITC paired with LPO loans

1. Vogtle OCC estimation and projections in 2024 USD from K. Shirvan, 2024 Total Cost Projection of Next AP1000; 2. Vogtle OCC calculated from VCM 30 (actual outlays over the course of the project) then adjusted for inflation to 2024 values; 3. ITC and bonuses are applied to "all-in" costs

Even assuming Vogtle costs inflated to 2024, next AP1000 could be <\$100/MWh with IRA benefits and closer to ~\$60/MWh with cost reductions

Estimated LCOE, 2024 \$/MWh

LCOE fails to capture the full benefit of 80-year clean firm operating assets

Costs over nuclear plant lifetime

During a nuclear plant's first ~30 years of operations, paying back debt and equity investments is reflected in a **higher initial** LCOE However, once nuclear plants are paid off, they generate power for the remainder of their lifetime with **low and predictable operating costs**

~\$30-35/MWh

Barriers to liftoff and potential solutions

Barriers to liftoff	Potential solutions			
Market power prices do not consistently compensate nuclear for the value it provides	 System modeling efforts consistently show the cost saving benefits of clean firm sources like nuclear in a low-carbon energy future Innovative power purchasing is a key tool for large offtakers to catalyze new generation Clean firm standards could help drive nuclear deployment A standard value for clean firm power could help decision makers account for nuclear's decarbonization and reliability benefits Broader electricity market reforms could incentivize investment in new clean firm assets 			
Many potential customers cite cost or cost overrun risk as the primary barrier to committing to new nuclear projects	 Sharing costs to lower barriers to entry, either among private sector companies or with the government Sharing and insuring costs to provide resiliency for project completion Insuring resiliency through different cost scenarios with credit tools Ensuring on-budget delivery by better estimating costs and implementing best practices 			
The US lacks nuclear and megaproject delivery infrastructure	 The integrated project delivery (IPD) model aligns incentives between owners and contractors to deliver projects on-time and on-budget Funding constructability research could target the drivers of cost overruns and improve project delivery 			

Nuclear projects have a variety of tools to share and reduce costs and risks

• Government-enabled offtake certainty (both sharing and insuring)

Find more resources at liftoff.energy.gov/advanced-nuclear

