

Pathways to Commercial Liftoff: Innovative Grid Deployment

May 2024

Agenda

- Liftoff scope
- Opportunity at stake
- Current state of deployment
- Path to liftoff
- Key actions for and resources to support deployment

Key messages

- Multiple advanced grid solutions are available today to quickly and cost-effectively get more capacity
 out of the existing transmission and distribution system supporting upwards of 20-100 GW of
 additional peak demand while advancing grid reliability, resilience, affordability, and sustainability.
- These advanced grid solutions are already being used today yet deployment at scale and associated industry know-how is lagging due to a lack of sufficient incentives and prioritization.
- Achieving liftoff and deployment at scale requires proactive investment approaches with greater technology information sharing and integration in grid planning along with policy and regulatory signals and reforms to give industry sufficient incentive to invest.
- Policymakers, regulators, and utilities can better evaluate and therefore strategically deploy these advanced grid solutions today – leveraging federal funding and resources – to address grid hotspots in the near-term while modernizing the grid for the long-term.

Disclaimer

- DOE is only communicating public and nonprivileged information during this webinar.
- DOE will not be discussing the details of any specific program opportunity in this webinar (e.g., Request for Information, Notice of Intent, Funding Opportunity Announcement)

Innovative Grid Deployment Liftoff scope

Data source: NERC *Electricity Supply and Demand Data* (2023); EIA, *Monthly Energy Review*; NREL *Pathways to 100% Clean Electricity* (2022). Note that electricity demand here includes transmission losses and direct use.

Portion of lines estimated to be at or near end of life

Transmission

Significant external pressures stress the grid

Utility Dive Sept 2023 *"Record 13% of Eastern Interconnect capacity failed in Winter Storm Elliott: FERC, NERC"*

News Service of Florida Oct 2022

"FPL to seek \$1.1 billion from customers to cover Hurricane lan costs"

CBS News Aug 2021 *"PG&E briefly shut off power to 48,000 residents as wildfires continue to threaten California's power grid"*

USA Today Dec 2022 "Attacks on power substations are growing. Why is the electric grid so hard to protect?"

Customers

Estimated effective transmission capacity unlocked from bulk system investments

Estimated T&D capacity relief from non-wires investments

Expected 10-year peak demand growth

are strong opportunities for new build corridors not captured here

Represents estimated full potential of deploying at scale in technically and economically feasible locations on the existing grid (as of 2023) Range represents potential outcomes based on technology impact (e.g., DLR can increase effective capacity between ~5-40%) See full report for source and assumption information.

Individual technology value proposition

Advanced Grid Solutions		T&D capacity impact	Affordability	Reliability	Resilience	Sustainability
Advanced Transmission Technologies	Advanced Conductors					
	Point-to-Point HVDC systems					
Situational Awareness and System Automation Solutions	Advanced Sensors					
	Power Factor Correction					
	Smart Reclosers					
	Substation Automation & Digitization					
	Base ADMS (D-SCADA, OMS)					
	System efficiency: VVO					
	DER integration: DERMS Reliability: FLISR					
Grid-Enhancing Technologies and Applications	Dynamic Line Ratings (DLR)					
	Adv. Power Flow Control (PFC)					
	Topology Optimization					
	Energy Storage					
	Advanced Flexible Transformers					
	Virtual Power Plants (VPPs)					

Low	Moderate	Significant	Primary
Indirect, limited	Direct, moderate	Direct, operationally	Direct, primary
impact	impact	significant impact	impact

Note: Foundational technologies are excluded since they have limited direct impact on outcomes. Benefits representative of relative impact for a specific technology (within each row) and not for comparison between technologies (between rows).

Additional benefits

✓ Quick to deploy

~1-3 years for a utility's first deployment <6-12 months rapid scale up for subsequent deployments

✓ Low cost

Example: Grid-Enhancing Technologies like dynamic line rating and advanced power flow control are often <5-25% cost of conventional alternatives

✓ Advance Energy Justice and Equity

Improved affordability and reliability, improved visibility to communities

Advanced grid solutions share dependencies on foundational technologies

Example: Communications Foundational Technology

U.S. DEPARTMENT OF ENERGY 17

EXAMPLE DEPLOYMENTS. NOT EXHAUSTIVE.

EXAMPLE DEPLOYMENTS. NOT EXHAUSTIVE.

Key drivers of advanced grid solution investments to date

Legislative and regulatory actions

(e.g., FERC orders, state policy planning requirements and incentives, regulatory grid modernization planning requirements)

External pressures

(e.g., severe weather, demand growth, distributed energy resource growth)

Federal funding and resources

(e.g., Grid Deployment Office GRIP program, Loan Programs Office low-cost loans)

Transmission and distribution capital expenditure in 2023 (\$B)

Liftoff will be achieved when these advanced grid solutions become a **core part of utilities and regulators' planning and operational toolkit**

Achieving Liftoff within 3-5 years

Priority 1: Build and transparently share the bank of industry evidence of the technology value proposition

Example opportunities:

- Comprehensive and transparent case studies from deployments – documenting benefits, costs, and operational impacts
- Resource library/center of excellence for advanced grid solutions
- Multi-stakeholder convenings, workshops, and/or working groups to share deployment experiences

Example efforts

Energy Systems Integration Group Grid-Enhancing Technologies User Group

Industry-led working group to share information and discuss best practices, challenges, and benefits

Idaho National Laboratory's Transmission Optimization with Grid-Enhancing Technologies (TOGETs) project

Technology analysis, reviews, and case studies (e.g., Advanced Conductor Scan Report, GETs case studies)

European Network of Transmission System Operators (ENTSO-E) Technopedia

Publicly accessible library of resources in Europe covering variety of grid technologies and applications

Priority 2: Develop implementation and operational know how

Example opportunities:

- Standardized and interoperable technical **specifications**
- Installation, inspection, and operational checklists, guidance and best practices
- Workforce development partnerships and training programs

Example efforts

Electric Power Research Institute (EPRI) advanced conductor testing and guidance

Technical reviews and guidance on selection and inspection of advanced conductors

Idaho National Laboratory's Transmission Optimization with Grid-Enhancing Technologies (TOGETs) project

Planning and operational studies in partnerships with industry

Priority 3: Refine planning and investment case approaches

Scenario: Replacing aging transmission conductor lines

Assumes ACSR cost is ~40% the cost of advanced conductor

Example opportunities:

- Longer-term planning horizons (10+ years)
- Integrated planning processes (e.g., Integrated Distribution System Planning, capacity expansion and asset replacement integration)
- Comprehensive investment case approaches to consider technologies in strategic bundles and value the holistic suite of benefits (e.g., energy efficiency, equity, decarbonization)

Scenario: Evaluating dynamic line rating (DLR) to address congested transmission lines

25% shared savings incentive

Example opportunities:

- Performance-based regulation (PBR), such as:
 - Performance Incentive Mechanisms (PIMs)
 - Shared savings incentives
- New cost allocation methods (e.g., data centers pay for grid upgrades)
- Cost recovery for innovation funds for testing and scaling innovative solutions

Advanced grid solutions could be deployed without increasing costs to ratepayers

Use existing replacement investments to **proactively upgrade assets** with advanced grid solutions Develop new cost allocation mechanisms Leverage **federal funding** resources

Priority actions key grid stakeholders can start taking today

Grid Operators (IOUs, co-ops, public power, RTO/ISOs)

- Evaluate and deploy no regrets solutions to address grid hotspots today
- Develop grid modernization strategies using emerging best practices

Regulators & Governance Boards

(PUCs, FERC, councils, boards, Tribal authorities)

- Require grid operators to consider advanced grid solutions in planning
- Align utility incentive structures and develop cost recovery mechanisms

Policymakers

(legislators, governors, state energy offices)

- Support enabling legislation and collaborate with regulators to integrate advanced solutions in current processes
- Coordinate multi-stakeholder
 collaborations

Solutions Providers

(tech. providers, engineering firms, consultants)

- Integrate advanced grid solutions into core services and articulate benefits
- Share performance risk for proven but sub scale solutions

Associations & Labor Orgs

(industry, regulatory, utility, labor)

- **Develop enabling industry tools** (e.g., playbooks, briefs, best practices)
- Drive and expand collaborations between industry stakeholders

Community Groups & Intervenors

(community groups, consumer advocates, NGOs)

- Engage in regulatory dockets and rate cases
- Engage with policymakers and regulators on supportive policy actions

Example DOE resources to support deployments

(not exhaustive)

Category	Program	Description	
Direct Funding Support	Grid Resilience and Innovation Partnerships (GRIP) Program	\$10.5B in grant funding for grid investments, including for advanced grid solutions and applications.	
	<u>Grid Resilience State and Tribal</u> Formula Grants	\$2.3B in formula grants for grid resilience against extreme weather	
Loans and Financing	Transmission Facilitation Program	\$2.5B in commercial support for qualified transmission projects	
	Energy Infrastructure Reinvestment Loan Program (1706)	Loan guarantees for projects repurposing existing energy infrastructure that has ceased operations or enable operating energy infrastructure to reduce emissions	
Technical Assistance	Grid Resilience Assistance	Technical and other assistance to support state, Indian tribe, territo and industry needs to support grid resilience	
	State Technical Assistance Program	Technical assistance for state regulators and policymakers	
Deployment tools and resources	Example: Technology analyses	Variety of technology reviews and assessments, including from National Labs (e.g., <u>Advanced Conductor Scan Report</u> , <u>Reconductoring Economic and Financial Analysis (REFA)</u> (full too forthcoming)	
	Example: System planning resources	Resources on grid modernization planning best practices, Integrated Distribution System Planning approaches, and other planning support (e.g., Integrated Distribution System Planning)	

RECAP: Key messages

- Multiple advanced grid solutions are available today to quickly and cost-effectively get more capacity
 out of the existing transmission and distribution system supporting upwards of 20-100 GW of
 additional peak demand while advancing grid reliability, resilience, affordability, and sustainability.
- These advanced grid solutions are already being used today yet deployment at scale and associated industry know-how is lagging due to a lack of sufficient incentives and prioritization.
- Achieving liftoff and deployment at scale requires proactive investment approaches with greater technology information sharing and integration in grid planning along with policy and regulatory signals and reforms to give industry sufficient incentive to invest.
- Policymakers, regulators, and utilities can better evaluate and therefore strategically deploy these advanced grid solutions today – leveraging federal funding and resources – to address grid hotspots in the near-term while modernizing the grid for the long-term.

Thank you!

This and all other Liftoff reports and webinars can be found at **liftoff.energy.gov**

Feedback is welcome at liftoff@hq.energy.gov

